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In  order to show t h a t  the  moments  of A do not  
depend on a l inear relat ionship between h and  k 
let us assume t h a t  Arlh=Arek, where Arl and  Ar9 are 
integers,  and  therefore we can pu t  h=Ne~t,  k = N ~ t ,  
where A varies in such a way  t h a t  h and k assume 
integer values. I f  we now in terpre t  2sAx and  2s~ty 
as independent  r andom variables,  0 and ~ respec- 
t ively,  equat ion (A17) becomes 

A = cos ~ + cos fl + cos (~ +f l ) ,  
where 

a =NeO +Arlq~, fi =NIO - (Arl +Are)of. 

The r th  moment  of A is now 

~(0, q~) dadfl/4:ne, (A r> = ~ Ar(~x' ~) 

where the  Jacob ian  is (Ar~ +ArlAre +Ar~)-i and  the  
integrat ion is t a k e n  over the  paral le logram P with 
vertices a t  (0, 0), (2~rArl, 2zAre), ( -2gAr2 ,  2z(Arl +Are)) 
and  ( -2~(Ar l+Are ) ,  2zArl). Let  I be 

on enclosing P in a rectangle R with sides of length 
2~r(N1 + Are), 27~(2N1 + Are) parallel  to the  axes c¢ and  fi, 
the  integral  of A r over R is (Arl+Are)(Are+2N1)I. 
Now from the periodicity of the  function A and  from 
the fact  t h a t  the  vertices of P ' a n d  R have coordinates 
which are multiples of 2~, the integral  of A r over the  
areas  which are not  common to P and  R is equal  to 
(N2+21V1Ne)I: therefore,  the  integral  of A r over P 
is (N~ + N1N2 + Ar2)I from which 

(/V21 + -hT1Are + Are2) -1 .~ffP Ar(O~' ~)docdt~ 

o o 

The var iables  AreO+Nlcf and N l O - ( N l + N e ) c f  can 
therefore be replaced by  c¢ and fl, which are uniformly 
d is t r ibuted  in the  range (0-2~) ,  and  the  moments  
of A 2r are independent  of N1 and  N2 giving 
A = cos c~ + cos fl + cos (~ +fl) as the  effective geomet- 
rical s t ruc ture  factor  for s ta t is t ical  purposes. I f  we 
now pu t  0 = ( ~ + f l ) / 2  and  ~v=(c~-fl)/2 a similar 
analysis  to the  above leads to A = cos 20 + 2 cos 0 cos 
as another  form for the purposes of s ta t is t ical  analysis.  

We wish to t h a n k  Prof. L . R .  Shenton for his 
interest  and advice on s ta t is t ical  mat ters .  
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Simple expressions for evaluating theoretical moments of the intensities of X-ray reflexions are 
tabulated. They cover crystals with any triclinic, monoclinic or orthorhombic space group and they 
are valid when the unit cell contains a small number of atoms and atoms of widely differing weights; 
consideration is given to the modifications required when atoms are present in special positions. 
The evaluation and comparison of theoretical and experimental moments are described and illus- 
t rated by examples which could not have been studied by the usual statistical tests. 

1. Introduction 

The r th  moment  of the  in tens i ty  of a group of X - r a y  
reflexions, <Ir}, is defined as the  average value of P ,  

where values of I represent  the  intensit ies of the  
individual  reflexions. 

The methods described in P a r t  I (Foster & Har -  
greaves, 1963), for deriving theoret ical  moments  of 
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t he  in tens i t i es  of X - r a y  ref lexions,  have  been  used 
to  ob ta in  t h e  express ions  for theore t i ca l  m o m e n t s  of 
i n t e n s i t y  now p r e s e n t e d  in  § 2 of P a r t  I I .  These  
express ions  invo lve  s u m m a t i o n s  e x t e n d i n g  over  the  
a toms  in  t he  a s y m m e t r i c  un i t  of t he  cell a n d  are 
va l id  even  w h e n  the  n u m b e r  of a toms  in  t he  un i t  cell 
is smal l  or w h e n  some a toms  differ  cons iderab ly  f rom 
others  in  weight .  A compar i son  of t heo re t i ca l  and  
e x p e r i m e n t a l  m o m e n t s  of i n t e n s i t y  provides ,  there-  
fore, a t e s t  for c rys ta l  s y m m e t r y  which  can be app l ied  
to  ma te r i a l  of any  composi t ion .  I n  contras t ,  mos t  
s ta t i s t i ca l  t es t s  for s y m m e t r y  (International Tables for 
X-ray Crystallography, 1959) are va l id  on ly  w h e n  the  
un i t  cell conta ins  a large n u m b e r  of a toms  of equa l  
weight .  

I n  th is  pape r  an  accoun t  is g iven  of t he  p rocedure  
for app ly ing  m o m e n t  tes t s  to  d e t e r m i n e  t he  s y m m e t r y  
of crystals  in  t he  tr icl inic,  monocl in ic  and  or tho-  
r h o m b i c  sys tems.  All t he  r e l e v a n t  theore t ica l  ex- 
pressions are p re sen ted  in  § 2; in  using t h e m  it  is 
unnecessa ry  to refer  to  - -  or to u n d e r s t a n d  - -  t he  
unde r ly ing  t h e o r y  deve loped  in  P a r t  I. 

2. T h e o r e t i c a l  m o m e n t s  

Momen t s  of i n t e n s i t y  depend ,  in a compl ica ted  way,  
on  t he  t ypes  a n d  re la t ive  pos i t ions  of s y m m e t r y  
e l emen t s  in  the  s t ruc ture .  A safe way  of a l lowing for 

in t e rac t ions  b e t w e e n  t he  d i f fe ren t  s y m m e t r y  e l emen t s  
is to  calcula te  m o m e n t s  of i n t e n s i t y  for t he  i nd iv idua l  
space groups,  us ing in tens i t i es  de r ived  f rom the  
s t ruc ture - fac tor  fo rmulae  g iven  in  International Tables 
for X-ray Crystallography (1952). The  in tens i t i e s  are 
o b t a i n e d  f rom 

I(h~l) = (Zf rAr )~+(Zf~Br)~ ,  

where  A and  B are t r i gonomet r i ca l  express ions  which  
are l i s ted  in  the  International Tables for X-ray Crystal- 
lography for each space group and  p lane  group,  
f i  is t he  sca t t e r ing  factor  for t he  r th  a t o m  and  t he  
s u m m a t i o n s  are t a k e n  over  all t he  a toms  in  t he  
a s y m m e t r i c  un i t  w i th in  the  un i t  cell. Express ions  
g iving m o m e n t s  of i n t e n s i t y  m a y  t h e n  be der ived ,  
us ing t he  m e t h o d s  descr ibed  in P a r t  I, for all bu t  
two  of the  74 space groups and  the  9 r e l a t ed  p lane  
groups in  the  tr icl inic,  monocl in ic  and  o r t h o r h o m b i c  
sys t ems ;  t he  except ions  are Fddd and  Fdd2  which  
are, in  any  case, un ique ly  d e t e r m i n a b l e  f rom syste-  
ma t i ca l ly  absen t  reflexions.  The  f irst  t h ree  m o m e n t s  
of i n t e n s i t y  for these  space groups and  p lane  groups  
are g iven  in Table  1. Many  of the  express ions  for 
m o m e n t s  of i n t e n s i t y  are iden t ica l  for two  or more  
space groups and  p lane  groups (apar t  f rom a numer ica l  
cons tan t ,  which  can be ignored  for our  purpose)  
because t h e y  are de r ived  f rom similar  s t ruc ture-  

Table  1. Formulae used in calculating theoretical moments: all atoms in general positions 

Geometrical structure factor Moment of intensity 

A = cos0 B ---- sin 0 <I> ---- S(2) 
A = sin 0 B = cos 0 <i2> = 2S~.(2)_S(4) 

</a) = 6S8(2)_ 9S(2)S(4) + 4S(6) 
2. A = cos0 B = 0 <I> = ½S(2) 

A = s in  0 B = 0 (X~> = ~ S ~ ( 2 ) - ~ 8 ( 4 )  

(±3> = ~5.$3(2 )_~s(2)~(4) +~S(0) 
3. A = cos0cosq~ B = c o s 0 s i n ~  <I> = ½S(2) 

A ---- c o s 0 s i n ~  B = cos0cos~  <I2> = ½S2(2)--~S(4) 
A = cos 0 sin ~ B = sin 0 sin ~ <in> = ~$3(2)_~S(2)S(4)+~S(6) 
A = s i n 0 s i n ~  B = s in0cos  

4. A = c o s 0 c o s ~  B = 0 <Z> = ¼~(2) 

A = cos 0 sin ~ B = 0 ( F )  = ~$2(2)-~S~S(4) 
A = sin 0 sin q) B = 0 (I 3) = ~$3(2)---~S(2)S(4)+5S(6) 

5. A = cos0cos~0cos~p B = s in0s in~sin~f l  <I> = 1S(2) 
A = o o s 0 s ~  ~ s i n ~  B = s in  0 c o s ~ o o s ~  < ~ >  = ~-~(2)--~(4) 

<i3> = ~ s 3 ( 2 ) _ ~ s ( 2 ) s ( 4 ) + ~ s ( 6 )  
6. A = o o ~ 0 o o s ~ o o s ~  B = o o s 0 o o ~ s i . ~  (I)  = ¼s(~) 

A = ~ o s 0 s i n  ~ s i n  ~ B = c o s 0 s i n  ~ c o s ~  < F >  = ~ S ~ ( 2 ) + ~ S ( 4 )  

A = cos 0 sin (p sin ~ B = sin 0 sin (p sin ~p <I3> = ~2S3(2)+ 9~S(2)S(4)- 1S(6) 
7. A = cos0cos~cos~p B---- 0 <I> ---- ~S(2) 

A = cos0eos(psin~p B = 0 (I  S) = ~$2(2)+8S(4)  
A ---- cos 0 sin T sin ~ B ---- 0 (13 ) ---- 5-~2Sa(2) + ~S(2 )S(4 )  - 5~2S(6) 
A = 0 B = sin 0s in~siny~ 
A = 0 B = sin 0sinq~cos 
A = 0 B = sin 0cos~0cos 

n 

0, ~ and ~v each represent either 2~hx, 2~ky or 2xdz, <I r > is the rth moment of intensity, and S(t) = .~ft, where fi is the 
1 

scattering factor of the ith atom and the summation is taken over the n atoms in the asymmetric unit of the cell. 
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factor  formulae;  i t  will be seen tha t ,  for the  81 space 
groups and plane groups considered here, each moment  
is given by  one of only 7 different expressions. 

I n  using Table 1 to evaluate  theoret ical  moments  
the  first  step is to obta in  the  appropr ia te  values of 
A and B for the space groups and plane groups under  
considerat ion;  these are given in the  International 
Tables for X-ray Crystallography (1952). Neglecting 
the  integer preceding the  t r igonometr ical  factor, the  
same values of A and B are then  found in the lef t -hand 
column of Table 1; the corresponding expressions for 
moments  of in tens i ty  are given alongside, in the 
r igh t -hand  column. Any  convenient  table  of a tomic 
scat ter ing factors may  be used in evaluat ing the  
summat ions  S(t) ; very  accurate  values are not  required 
and  tempera ture  corrections are unnecessary. Final ly ,  
the  moments  of in tens i ty  are used to calculate the 
second and th i rd  moments  of z, where z is defined as 
the  rat io of the in tens i ty  of an X-ray  reflexion to the 
local average in tens i ty  (Howells, Phillips & Rogers, 
1950) and  the  r th  moment  of z is given by <zr> = 
< l , > / < I > ~ .  

There are several reasons why it  is preferable to 
compare theoret ical  and exper imental  moments  of z 
ra ther  t h a n  moments  of intensi ty .  Moments of z change 
much more slowly with Bragg angle and  their  use 
avoids the diff icul ty of obtaining the  absolute scale 
and  tempera ture  factors which are required for com- 
paring moments  of in tensi ty .  Also, theoret ical  
moments  of z can be evaluated  from summat ions  S(t) 
which extend over only the atoms in the asymmetr ic  
un i t  of the cell. Strict ly,  in Table 1, A, B and the  
moments  of in tens i ty  should be mult ipl ied by con- 
s tants  related to the  number  of equivalent  positions 
in the  uni t  cell. These constants  can be neglected, 
however, when all a toms occupy general posit ions in 
the  uni t  cell since they  are e l iminated in the evaluat ion 
of moments  of z; thei r  omission grea t ly  simplifies 
Table 1. 

Atoms in special positions 
When  some of the  atoms are in special posit ions 

in the uni t  cell i t  is necessary to consider the different 
mult ipl ici t ies  of equivalent  positions for atoms in 
general  and  special posi t ions;  the  constants  re la ted 
to these multiplicit ies,  which appear  in the  true 
expressions for moments  of in tensi ty ,  are no longer 
e l iminated in evaluat ing moments  of z. The change 
in the geometrical  s t ructure-factor  formula - -  to one 
containing fewer variables for the  a toms in special 
posit ions - -  mus t  also be t aken  into account.  

Consider first  the  case when the  contr ibut ions to 
the  s t ructure  factors of a toms in special positions 
are given by  A and  B terms with the  same number  
of the  variables 0, 9 and  y: - -  i.e. 2, 1 or 0 - -  for all 
such atoms. Quanti t ies  <I~> and <I~> may  be evaluated 
by means of the formulae in Table 1 but  with the  
summat ions  S(t) extending,  respectively, over the 
a toms in general positions only and over the  a toms 

in special positions only. I t  m a y  be shown, by  the  
methods  described in Pa r t  I, t h a t  the  f irst  three 
moments  of in tens i ty  can then  be calculated from the  
expressions given in Table 2. Moments of z are cal- 
culated from the  moments  of in tens i ty  in the  usual 
way.  

Table 2. 2'ormulae used in calculating theoretical 
moments: atoms in general and in special positions 

<I > = <Ig > + A 2 <Is > 
<I  ~ > = <Ig 2 > + it 4 <Is ~ > + KI) ,  9 <Ig > <is > 
<z~ > = <i~ > + ~ <z~ > + K #  <~ > <~  > + KW < ~  > <~ >. 

is the ratio 
number of equivalent special positions in the unit cell 
number of equivalent general positions in the unit cell" 

The value of K 1 is 6 for centrosymmetrical and 4 for non- 
centrosymmetrical plane groups and space groups, and the 
value of K 2 is 15 for centrosymmetrical and 9 for non-centre- 
symmetrical plane groups and spa.co groups. 

Each atom in a special position is counted as one complete 
atom in the summations S(r) used to evaluate <Isr>, even 
though atoms in special positions contribute only a fraction 
of their scattering power to the asymmetric unit; the constants 
)~ introduce the appropriate corrections for the fractional 
contributions from atoms in special positions. 

Table 3. Formulae used in calculating theoretical 
moments: atoms in general and in different types 

of special position 

<r. > = <z:. > + ~, <z~ > + ~,~ <z~ > + ~ <x~ > 
+ K I <Ig > {/tl 2 <~I > "[- ~22 <-12 > '-[- ~,32 <13 >} 
+ K~{~,zg~.2 2 <I z > <I9. > + ~ , 3  2 <_Z x > <I 3 > + ~,==~3 = <I 2 > <In >} 

<~ > = <zg~ > + ~ <±~ > + ~ <z~ > + ~ '  <z~ > 
+ K~. <Z~ ~. >{~ <I~ > + ~ <I,. > + ~ <I~ >} 

+ K~ <Ig > { ~  <Z:> + ~  <I~ ~.> + ~  <Z~ ~. >} 
+ K~.{~% ~ <±/ > <I2 > + ~%~ <Z/ > <Z~ > 
+ ~.%~ <Z~ > <X~ > + :,,.%~ <~  > <~ > 

+ K~ <Zo > { ~ / -  <X~ > <Z,_ > +~.%~ <S~ > <I, > 
+ ~'12~'32 <I1 > </3 >} "[- "K3~'12~'22'~['32 </ I  > <12 > <AT3 >" 

11, 12, 13 are the values of Is for special positions involving, 
respectively, two, one and none (fixed positions) of the 
variables 0, F, % and 21, ~2, 28 are the corresponding constants 
:t defined as in Table 2. 

The value of K 1 is 6 for centrosymmetrical and 4 for 
non-centrosymmetrical plane groups and space groups, the 
value of K 2 is 15 for centrosymmetrical and 9 for noncentro- 
symmetrical plane groups and space groups, and the value 
of K s is 90 for centrosymmetrical and 36 for non-centre- 
symmetrical plane groups and space groups. 

If  the  special posit ions are fixed points,  wi th  no 
var iable  parameters ,  none of the  expressions in Table 1 
is appropriate .  I t  is then  usual ly  necessary, wi th  a 
single set of equivalent  fixed points,  to  divide the  
reflexions into two groups. For  one group half  the  
a toms a t  fixed points  scat ter  in  phase with respect 
to each other  bu t  out  of phase wi th  respect to the  
other  half  so t h a t  (I~>=O; for the  other  group all 
the  a toms scat ter  in  phase and we have (I~>=f~ ~. 
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If  there are several non-equivalent  f ixed points the 
relat ive phases have to be considered in  more detai l  
and  we then  use 

<ID = (o~if~ + o , ~ f ~ +  . . .o ,  n fn)  ~r, 

where f l ,  f2, . . . f n  are the scattering factors of atoms 
at  the non-equivalent  f ixed points 1, 2 . . . n ,  and 
a = = 0 ,  + 1  or - 1 ;  the appropriate  values of an are 
obtained from the geometrical  s tructure factor on 
introducing the coordinates of the f ixed points. 

The foregoing t rea tment  will  be adequate,  in prac- 
tice, for most triclinic, monoclinic and orthorhombic 
crystals containing atoms in special positions. But  
modifications m a y  be required when atoms occupy 
more t han  one type  of special position. The most 
general  problem arises when A and B involve all  
three variables 0, ~ and  ~o, and when some atoms are 
ia  general positions, some occupy special positions 
involving two variables,  some occupy special positions 
involving only one variable,  and some occupy fixed 
positions. Table 2 is then  replaced by  Table 3. 

3. Comparison of experimental  and 
theoretical m o m e n t s  

The exper imental  da ta  are usual ly  avai lable  in the 
form of relat ive intensit ies to which have been applied 
Lorentz-polarization factors and  such corrections as 
those for absorption. Accidental ly  absent  reflexions 
mus t  be included in the analysis  but  sys temat ica l ly  
absent  reflexions are omit ted;  reflexions with 
sin 0 _< A/(shortest cell dimension) are also omit ted 
for theoretical  reasons (Wilson, 1949). When  working 
with three-dimensional  da ta  it  is usual ly  necessary 
to omit  reflexions wi th  one or two indices zero since 
in general  their  structure-factor formulae and, there- 
fore, their  moments  are different  from those of general 
reflexions hkl; similarly,  reflexions with two indices 
zero are omit ted from two-dimensional  data.  

Since nei ther  the absolute scale factor nor the 
isotropie tempera ture  factor, exp ( - 2 B  sin 2 0/Ae), is 
known, i t  is convenient  to work in terms of the 
funct ion z which is independent  of these parameters .  
Procedures for determining the (I> curve required 
for the der ivat ion of exper imenta l  values of z have 
been described by  Howells, Phi l l ips  & Rogers (1950) 
and  the effects of errors in this  curve have been 
discussed by  Rogers, Stanley & Wilson (1955). We 
have usual ly  divided the reflexions into about  half  
a dozen (j) groups, each covering a small  range of O, 
and determined <I>j for each of these groups; wi th  
two-dimensional  da ta  it  m a y  be necessary to increase 
the  number  of reflexions in each range by  using 
reflexions more t h a n  once in  overlapping ranges. 
Values of z for each reflexion are then  given with 
sufficient accuracy by  I/<I>j. The second, th i rd  and 
higher moments  of z are obtained, respectively, from 
the  average values of z 2, z 3, z 4 . . . .  

When  the  mater ia l  giving rise to the X-ray  re- 

flexions consists of more t h a n  one type  of atom, 
the  moments  of z will  be 0-dependent because of the  
var ia t ion with 0 in  the relative magni tudes  of the 
scattering factors for different atoms. I t  m a y  then  
be necessary to divide the reflexions into a few ranges 
of 0 - -  the ranges used in calculating the exper imenta l  
moments  are often convenient though usual ly  nar- 
rower than  s tr ic t ly  required - -  and to determine the  
theoretical  moments  at a value of 0 corresponding to 
the centre of each range. Theoretical and exper imenta l  
moments  m a y  then  be compared in each range or 
they  m a y  be compared for the entire set of reflexions 
by  weighting the moments  in each range with the 
number  of reflexions in tha t  range. Wi th  m a n y  
materials,  par t icular ly  organic compounds containing 
only carbon, nitrogen, oxygen and hydrogen (which 
can be neglected), the const i tuent  atoms are suf- 
f iciently similar  in scattering power for the 0-variation 
in moments  to be negligible ; if the theoretical  moments  
are found to be effectively constant  at  three or four 
widely separated values of 0, then  it  is clear tha t  the 
exper imenta l  moments  can be derived from the outset  
for the whole set of reflexions. This point  is discussed 
fur ther  in § 4, example  (i). 

In  practice we have found tha t  i t  is usual ly  quite 
sufficient to compare theoretical  and exper imenta l  
values of (z2>, though we have usual ly  compared 
values of <z 8> also, as a check. Occasionally we have 
compared values of <zd), but  since the results for 
fourth moments  have never been at  variance with 
those obta ined from second and th i rd  moments ,  
and since the computat ions become more tedious for 
higher moments ,  we have omit ted expressions for 
<I 4> from this paper. 

4. Examples  

Moment tests have been carried out successfully on 
several mater ia ls  examined in this  depar tment .  In  
the three examples described here the tests helped 
to determine space groups which were unknown at  
the t ime the tests were made. 

(i) 9-p-Ethoxycarbonylphenyl-9-stibafluorene 
The 2 molecules of C20H1702.Sb in the tr icl inic 

uni t  cell (Chaudhuri,  1955) mus t  occupy general  
positions and the problem was to dist inguish between 
P1 and Pi. 

P I :  
The geometrical s tructure factor for reflexions hkl is 

A = cos 2u(hx + ky + lz) ; B = sin 2~(hx + ky + lz). 

A and B re ta in  the same form for the  Okl and hkO 
reflexions examined,  hence the first  set of expressions 
in Table 1 gives the theoretical  moments :  

U> =s(2) 
(Ie>=2S2(2)-S(4) 
( I  a) = 6Sa(2) - 9S(2)S(4) + 4S(6) ,  
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Table 4. Comparison of experimental and theoretical moments of z for 
9-p-ethoxycarbonylphenyl-9-stibafluorene 

r 

Number  of Exper-  
sin 0 range reflexions imental  

I 0.20-0-38 29 1.82 
0.38-0.50 29 1.83 
0-50-0-70 71 1.98 

hkO 0.70-0.85 62 2.69 
0.85-1-00 55 1.75 

Weighted  average values 2.07 
for all reflexions 

0.20-0.38 25 1.88 
0.38-0.48 24 1.46 
0-48-0-65 48 3-94 
0.65-0.75 50 1.72 

0/cl 0.75-1.00 48 2.13 
Weighted  average values 2.35 

for all reflexions 
Wilson (1949) dis t r ibut ion 

Theoretical 
Pl  PY 

1.21 1.80 
1.16 1-74 
1.16 1.74 
1.16 1-74 
1.18 1.76 
1.17 1.75 

1.21 1-81 
1.16 1.74 
1-16 1.74 
1.16 1-74 
1.17 1.75 
1.17 1"75 

2 3 

(z 3 ) 

Exper-  Theoretical 
imental  P I  P 1  

4.5 1.70 4.20 
3-9 1.50 3.78 
4.2 1.50 3.78 
7.2 1.50 3.78 
3.6 1.55 3.95 
4.8 1.54 3.87 

4.6 1.70 4-25 
3.2 1.50 3.78 

13.2 1-50 3.78 
3-9 1.50 3.78 
5.1 1.55 3.85 
6.4 1.54 3.86 

6 15 

whence 

(z~} = (I~)/  (X) 2 = 2 - S(4 )IS2(2) 
and 

(z a) - ( I3) /  ( I ) 3 = 6  - 9S(4)/Se(2) + 4S(6)/$3(2) . 

P I :  
Similarly when A = c o s  27~(hx+ky+lz);  B = O  we ob- 
tain, using the second set of expressions in Table 1,. 

<z z> = 3 - 3S(4)/2S2(2) 
and 

( z3)= 15-45S(4) /2S2(2)  + 10S(6)/$8(2) . 

Experimental  moments, calculated from observed 
intensities for several ranges of sin 0 (Cu K radiation), 
are compared in Table 4 with the theoretical moments 
calculated at the centre of each range. The weighted 
average values, and those for nearly all the individual 
ranges, indicate clearly that  the space group is P1. 

It  will be seen that  the experimental moments  tend 
to be higher than the theoretical moments. This may 
be due to errors in evaluating the <I> function 
(Rogers, Stanley & Wilson, 1955) - -  the data used 
here are not corrected for absorption errors, which 
are known to be large - -  or to hypersymmetry  
(Rogers & Wilson, 1953; Wilson, 1956); both of these 
effects increase the values of the experimental 
moments. 

The last line in Table 4 gives theoretical moments 
for the Wilson (1949) distribution corresponding to a 
large number of atoms of equal weight. It  is interesting 
to note that  if the large contribution of the heavy 
ant imony atom had been ignored and these moments 
had been compared with the experimental values, 
then the space group would have been wrongly chosen 
as P1. 

Below sin 0 = 0.20 the theoretical moments change 
rapidly because of sharp changes in the relative 
values of the scattering factors for light and heavy 

atoms, but experimental moments in this range have 
not been considered for theoretical reasons (Wilson, 
1949). The theoretical moments in Table 4 are reason- 
ably constant and it can be seen that  the weighted 
average values differ very little from the values near 
the centre of the range (sin 0 N 0.6). I t  is easily shown 
that  when there are effectively only two types of atom 

as in the present example, where oxygen can be 
regarded as equivalent to carbon and the hydrogen 
contribution is negligible - -  then all moments of z 
derived from Table 1 can be expressed in terms of 
the ratio between the scattering factors of the two 
types of atom (fib/fc); the variations of the actual 
scattering factors with sin 0 are not important  except 
in so far as they affect this ratio. If there is not much 
difference between the theoretical moments for the 
maximum and minimum value of this ratio, then 
clearly there is no need to group the reflexions, as 
we have done here, into several different ranges of 
sin 0. In  the next two examples we have found that  
the changes in theoretical moments with sin 0 are, 
proportionately, even smaller than in the present 
example. The results are presented, therefore, with 
all the reflexions grouped into a single range. 

(ii) Thiourea dioxide 
The space group was still doubtful after an examina- 

tion of the structure by two-dimensional methods. 
Moment tests with full hkl data were then used to 
distinguish between the two possible space groups 
P21nb and Pmnb; a three-dimensional structure deter- 
mination (Sullivan & Hargreaves, 1962) confirmed 
that  the correct space group had been chosen. 

X-ray data and dimensional considerations indicate 
that  the 4 molecules of (H2N)2CSOe in the unit  cell 
must either occupy general positions in the space group 
P21nb or lie across the mirror planes in the space 
group Pmnb. Moment calculations for P21nb are 
similar to those given in the previous example, but 
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the  calculations for Pmnb are more complicated 
because the  sulphur  and  carbon atoms occupy special 
positions. 

The geometrical  s tructure factors for Pmnb are: 

h=2n, (lz+l)=2n 
A -- 8 cos 27~hx. cos 2zky .  cos 27dz; B = 0 

h=2n, (lc+l)=2n+ l 
A--  - 8  cos 2~hx . s in  2~ky . s in  2~lz; B=O 

h=2n+ 1, ( k + l ) - - 2 n  
A =  - 8  sin 2~hx . s in  2g/cy.cos 2~lz; B=O 

h=2n+ l, (lc+l)=2n+ l 
A = - 8 sin 2~hx. cos 2~ky. sin 2~lz; B = O. 

For the atoms in  general positions - -  oxygen, 
ni trogen and hydrogen - -  the quanti t ies  (I~> are 
evaluated,  therefore, using the seventh set of ex- 
pressions in Table 1. 

For the atoms in  special positions ~ sulphur and 
carbon ~ on the mirror  planes at x= ~ and x =  ~, 
the terms involving x in  the structure factors are 
always un i ty ;  the fourth set of expressions in Table 1 
mus t  be used, therefore, in  evaluat ing <I~}. 

Table 5. Comparison of experimental and theoretical 
moments of z for thiourea dioxide 

Theoretical 
A 

Moment Experimental "_P21nb .Pmnb 
<z~> 3"0 2.1 2.6 
<~> 13.~ 6.4 lO.4 

Moments <I r> are obtained from <I~> and <I~> 
using the formulae in  Table 2 with A = ½, K1 = 6 and  
K ~ =  15. Theoretical moments  of z, evaluated in this  
way for Pmnb, are compared in Table 5 with theoret- 
ical moments  for P2~nb and with exper imental  
moments  calculated from the  intensit ies of 318 hkl 
reflexions in  the range sin 0 = 0 . 5  to 1.0. There is a 
strong indicat ion tha t  the true space group is Pmnb. 

(iii) Sodium aluminum sulphate dodecahydrate 
I n  the monoclinic form of sodium alum the uni t  

cell contains 4 molecules of NaAI(SOd)~.12H20 and 
the space group is ei ther C2/c or Cc. An a t t empt  to 
determine a structure based on C2/c proved un- 
successful (Kumra  & Lipson, 1962). Moment tests on 
92 h01 reflexions indicate strongly that the space 
group is Cc. 

The calculation of theoretical  moments  for Cc is 
similar  to tha t  described in the first  example since the 
molecules would occupy general positions in this  space 
group. 

In C2/c there are 8 equivalent  general positions; 
therefore the sodium and a luminum atoms mus t  
occupy special positions either on symmet ry  centres 
or rotat ion axes;  for hO1 reflexions these special 
positions are f ixed points. I t  is assumed tha t  the 
oxygen atoms are in  general positions and simple 

Table 6. Comparison of experimental and theoretical 
moments of z for sodium alum 

Theoretical 
A 

Moment Experimental Cc "(i) C2]c (ii) 02/c 
<z 2 > 1.84 1-89 2-61 2.60 
<za> 4.63 5-10 10.0 10.1 

In (i) C2]c the sodium and aluminum atoms scatter in phase 
for all reflexions; in (if) C2/c they scatter in phase when 
(h + l) = 4n and out of phase when (h + l) = 4n + 2. 

stereochemical considerations show tha t  the sulphur  
atoms mus t  also occupy general positions. Moments  
<I r} are obtained from (I~} and (I~} as in the previous 
example  wi th  the difference tha t  there are now two 
possible sets of expressions for (I~}. Wi th  certain 
pairs of f ixed points  the sodium and a luminum atoms 
scatter in phase for all  reflexions in which case 

<I;>=(fNaWfA1) 2r. 

But  with other pairs of f ixed points we have  

<I~)= (f~a +fA1) 2r when (h + l )=  4 n ,  
and  

(IF) = (fNa--fA1) ~r when (h + l ) =  4n + 2 .  

The results of the calculations, giving a clear 
indicat ion tha t  the correct space group is Cc, are 
presented in Table 6. 

5. Discuss ion  

Moment tests have proved to be successful in  all  the  
examples  of symmet ry  determinat ion which we have  
s tudied and  they  have resolved problems which could 
not  have been a t t empted  with the  usual  s tat is t ical  
tests (International Tables for X-ray Crystallography, 
1952, 1959). They are of par t icular  value under  
conditions for which the Wilson (1949) probabi l i ty  
distr ibutions of X-ray  intensit ies are not  valid, e.g. 
when the uni t  cell contains a small  number  of atoms, 
an  outs tandingly  heavy  atom or some atoms in special 
positions. As an examinat ion  of the expressions for 
moments  of z indicates,  the departures from the Wilson 
(1949) distr ibut ions are greatest  when the uni t  cell 
contains one a tom only or, what  is effectively equiv- 
alent,  one outs tandingly  heavy  atom. The f irs t  
example  in § 4 shows tha t  in these circumstances 
tests based on the Wilson (1949) distributions may 
lead to completely false conclusions. 

Moment tests can also be carried out, of course, 
on mater ia ls  for which the Wilson (1949) dis t r ibut ions 
are applicable. For such mater ia ls  there is no need 
to calculate theoretical  moments  since in  all  cases 
they  reduce to (z2}=2, (z3}=6 for non-centre- 
symmetr ica l  p lane groups and  space groups and  
(ze)=3, (za)= 15 for centrosymmetr ical  plane groups 
and  space groups. 

Of the a l ternat ive  stat ist ical  tests referred to in  
International Tables for X-ray Crystallography (1952, 
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1959) only the average-mult iple  tes t  (Wilson, 1950) 
can be applied when the  mater ia l  consists of a toms of 
different  weights. Moreover, the  scope of the  la t te r  
tes t  is fa ir ly  restr ic ted because i t  cannot  be used to 
detect  centres of s y m m e t r y  - -  except,  sometimes, 
indirect ly  - -  and  because it involves types  of re- 
flexions which are f requent ly  too small  in number  
to give s tat is t ical ly significant results. 

Wherever  possible, moment  tests  - -  and,  indeed, 
other  s tat is t ical  tests  - -  should be performed with 
three-dimensional  (hkl) reflexions ra the r  t han  re- 
flexions with one or two indices zero. The larger 
number  of reflexions avai lable permits  more reliable 
s tat is t ical  averaging;  in addit ion,  the  results are less 
l ikely to be seriously influenced by  hype r symmet ry ,  
by the overlap of a toms in project ion and by  the  
inadequate  s tat is t ical  averaging which m a y  occur if 
a heavy  a tom happens to fall, in projection, near  a 
special position. 

When  present,  h y p e r s y m m e t r y  invar iab ly  increases 
the  moments  of cent rosymmetr ica l  s tructures,  but  
since s ta t is t ical  tests  are usual ly made  on unknown 
s t ructures  it  is, in general,  impossible to allow for 
h y p e r s y m m e t r y  quant i ta t ive ly .  

Overlap m a y  raise or lower moments ,  depending 
upon the  space group, bu t  the errors which it intro- 
duces are likely to be impor t an t  only with one- 
dimensional  da ta ,  or two-dimensional  da t a  from 

crystals  with uni t  cells containing a small  number  
of a toms or one very  heavy  atom. 

We should like to t h a n k  Piof.  H. Lipson for his 
continual  interest ,  and he and  ~ S. K.  K u m r a  for 
making  available to us unpubl ished da t a  on monoclinic 
sodium alum. 
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The Secondary Extinction Correction 

:BY W. H. ZACHA~I.iSE~ 

Department of Physics, University of Chicago, U.S .A .  

(Received 25 .February 1963) 

I t  is shown that  Darwin's formula for the secondary extinction correction, which has been univer- 
sally accepted and extensively used, contains an appreciable error in the X-ray diffraction case. 
The correct formula is derived. 

As a first order correction for secondary extinction Darwin showed that  one should use an effective 
absorption coefficient/t +gQ where an unpolarized incident beam is presumed. The new derivation 
shows tha t  the effective absorption coefficient is tt +2gQ(1 +cos 4 20)/(1 +cos 2 20) 2, which gives 
#+gQ at  0 = 0  ° and 0=90  ° , but  #+2gQ at 0=45  ° . 

Darwin's theory remains valid when applied to neutron diffraction. 

I n t r o d u c t i o n  

The effect of secondary ext inct ion on the in tegra ted  
in tens i ty  of X - r a y  diffract ion in mosaic crystals  was 
f irs t  s tudied in detai l  by  C. G. Darwin  (1922), and the 
formulas  derived by him have  been used extensively 
th roughout  the last  fo r ty  years.  

Recent ly  this wri ter  found t h a t  the Darwin  equa- 
tions did not  give agreement  with precise in tensi ty  
measurements .  As a consequence a reexamina t ion  of 

the  theory  was under taken.  I t  was found t h a t  the  
polar izat ion of the X - r a y  beams was incorrect ly t rea ted  
in Darwin ' s  paper  and  in all subsequent  theoret ical  
work on secondary extinction.  The correct formulas  
have been derived and have  been found to give 
agreement  with experiment .  Since the new theoretical  
t r e a t m e n t  of secondary extinction requires significant 
modifications of equat ions in general use, the results  
of the  reexaminat ion  will be given in some detail  in 
the present  article. 
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